Hyers–Ulam stability of additive set-valued functional equations
نویسندگان
چکیده
منابع مشابه
Stability of Quartic Set-valued Functional Equations
We will show the general solution of the functional equation f(x + ay) + f(x− ay) + 2(a − 1)f(x) = af(x + y) + af(x− y) + 2a(a − 1)f(y) and investigate the Hyers-Ulam stability of the quartic set-valued functional equation.
متن کاملOrthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملOn the stability of fuzzy set-valued functional equations
Abstract: We introduce some fuzzy set-valued functional equations, i.e. the generalized Cauchy type (in n variables), the Quadratic type, the Quadratic-Jensen type, the Cubic type and the Cubic-Jensen type fuzzy set-valued functional equations and discuss the Hyers-Ulam-Rassias stability of the above said functional equations. These results can be regarded as an important extension of stability...
متن کاملFuzzy Stability of Additive–quadratic Functional Equations
In this paper we investigate the generalized HyersUlam stability of the functional equation f(2x + y) + f(2x − y) = f(x + y) + f(x − y) + 2f(2x)− 2f(x) in fuzzy Banach spaces.
متن کاملHyers-Ulam stability of a generalized additive set-valued functional equation
In this paper, we define a generalized additive set-valued functional equation, which is related to the following generalized additive functional equation: f (x 1 + · · · + x l) = (l – 1)f x 1 + · · · + x l–1 l – 1 + f (x l) for a fixed integer l with l > 1, and prove the Hyers-Ulam stability of the generalized additive set-valued functional equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2011
ISSN: 0893-9659
DOI: 10.1016/j.aml.2011.02.024